
Classical Decoding for Topological Codes

October 19, 2022

1 Introduction

Decoding algorithms for error correcting codes can be extremely complex computationally,
even in the classical setting, so much work has been done over the years to optimize these
procedures. For many quantum codes, decoding algorithms for their classical analogues can
be used, taking advantage of this history of work and optimization. Topological codes such
as Kitaev’s toric code however have no direct classical analogue – possibly the closest being
low density parity check codes – and so much unique work has been done to decode them.

Due in part to both locality of the stabilizer generators and high simulated thresholds,
topological codes are becoming increasingly attractive for realistic quantum computing. By
providing stabilizer generators with only geometrically local checks, the code can be im-
plemented in a linear nearest neighbour grid without the need for long range interactions.
However, for a code to be practically applicable to general quantum computing, there must
be efficient decoding schemes that can be performed between quantum processing steps.
Fortunately, algorithms have been found for accurately decoding the toric family of codes
that run in polynomial, and thus tractable, time.

This paper will examine some of these classical algorithms proposed for decoding the toric
code, as well as the closely related planar code, comparing their computational complexity
and simulated thresholds. In particular, I will examine approaches based on maximum graph
matchings, renormalization group methods, as well as a recent algorithm based on parallel
tempering.

2 The toric code

We begin by reviewing Kitaev’s toric code, as described in [8].
Suppose we have a square l× l lattice with periodic boundary conditions and 2l2 (data)

qubits placed on the edges. For a vertex s on the lattice, star(s) denotes the qubits on the
edges adjacent to s, and for a face p, plaquette(p) denotes the qubits on the edges of p.
Before we continue, it will be useful to note that every qubit on the lattice is contained in

1

the star and plaquette of exactly two vertices and faces, respectively. We can now define

As =
∏

i∈star(s)

Xi, Bp =
∏

i∈plaquette(p)

Zi,

where Xi ∈ Pn, the Pauli group on n qubits, denotes the n-fold tensor product with the
Pauli-X gate on the ith qubit, and the identity on all remaining qubits; Zi is defined similarly,
with the Pauli-Z gate instead of X.

These star and plaquette operators are all mutually commuting, since X and Z anti-
commute, and |star(s) ∩ plaquette(p)| ∈ {0, 2} for all vertices s and faces p. As a result,
they generate a stabilizer S and associated stabilizer code on the 2l2 (data) qubits, called
the toric code.

An important point to note is that each qubit is acted on non-trivially by exactly two
star operators and two plaquette operators. From this fact, we can both ascertain that the
product of every star (plaquette) operator is equal to the identity (note that X2 = Z2 = I),
and the fact that the product of at most l2 − 1 star (plaquette) operators cannot be equal
to the identity, as there will be at least 2 qubits acted on non-trivially. This informs us that
there are maximally 2l2 − 2 independent generators, and so 2 logical qubits are encoded by
the toric code.

The fact that each qubit is acted on by exactly two star and plaquette operators also
hints at how errors will look when one measures the syndrome. For example, a single X error
on a qubit i in the lattice will commute with the two star operators acting on i, and anti
commute with the two plaquette operators acting on it. If another X error is placed on one
of the boundaries of these plaquette operators, the resulting state is one that commutes with
the plaquette operator containing both errors, and anti commutes with the two plaquette
operators, each containing one of the errors. In general, only an even number of stabilizer
generators can have −1 eigenvalues at the same time, and are the result of some set of error
chains between pairs of negative eigenvalues.

Knowing this, we can characterize the logical operations of the code. Since X and/or
Z operations on inidividual qubits correspond to pairs of anti-commuting generators, the
only non-trivial operations commuting with all stabilizer generators are loops of X and/or Z
operations. Loops that don’t wrap around the boundary, are products of stabilizer generators
(specifically the generators contained inside or outside the loop) and thus contractible. The
logical operations then are the 4 X or Z loops around the opposite boundaries.

In general, we will want our error correction to form contractible loops with the actual
errors. Formally, we want to identify the correct homotopy class of a chain (or chains) of
errors. Two chains of errors on the lattice are homotopically equivalent if they are the
product of stabilizer generators, with the homotopy class being defined by the equivalence
relation. If we correctly guess the homotopy class of the syndrome, then applying any error
correction in the same homotopy class will create a set of closed, contractible loops. On the
other hand, applying error correction corresponding to a different homotopy class will cause
some non-trivial loops around the torus to appear.

As an important related code, the planar code corresponds to removing the periodicity
of the toric code. Smooth (rough) defects are introduced by not enforcing a contiguous

2

region of plaquette (star) stabilizers. If these contiguous regions wrap around the torus
in homologically1 distinct ways, the effect is to produce a toric-like code with two rough,
two smooth boundaries, and 1 logical qubit. Since the boundaries correspond to stabilizers
not enforced, a chain of X (Z) errors between two smooth (rough) boundaries commutes
with all the stabilizer generators. If the two boundaries happen to be the same, the loop is
contractible, otherwise it corresponds to one of the 2 logical operations.

3 Matching-based

A simple yet versatile classical decoding of the surface code is based on minimum weight
graph matching. The idea is to formulate the syndrome information as a weighted graph
and then perform a minimum-weight maximum matching algorithm; with high probability,
the error chains corresponding to this matching should be homotopically equivalent to the
actual set of errors.

Efficient (in the sense of polynomial time) algorithms are already known for maximum
graph matchings, and simulations using matching-based decoding have shown high thresholds
and potentially scalable performance [2], making this an attractive paradigm for topological
decoding.

3.1 Formulation as a graph matching problem

Given a graph G = (V,E), a matching in G is a subset of edges M ⊆ E such that no two
edges in M are adjacent (ie. end on the same vertex). A matching M is maximum if for any
e ∈ E \M , M ∪ {e} is not a matching, and a maximum matching is perfect if every v ∈ V
is an endpoint of an edge in M .

For a syndrome measurement of a toric code, we can define a (complete) graph G with
vertices corresponding to the non-zero bits of the syndrome (ie. stabilizer generators with
eigenvalue −1), and placing edges between each vertex. It will be helpful later to notice that
in general, this graph can have O(l2) vertices, and O(l4) edges on a lattice of linear size l.
Any set of errors that can generate the given syndrome is then a perfect matching in this
graph, where the edges correspond to chains of X or Z errors. To correct these errors, it
suffices (but is not required) to pick the correct matching and the correct homotopy class for
each edge within that matching; this is done by choosing the most probable matching and
correcting along the most probable homotopy class for each edge. These algorithms typically
simplify the problem by letting each edge correspond to only one error chain, usually the
most probable (in most cases the shortest) error chain between the syndrome bits, so that
each matching corresponds to exactly one homotopy class.

It is important to note, however, that the correct matching is not required to correct
the error. For example, one matching may pair up the correct syndrome bits but cause
a logical operation by applying correction along the (homotopically) wrong paths between

1Distinct from homotopic equivalence

3

those bits, while another matching may pair up the wrong syndrome bits, but still result in
a contractible loop when the corrections are applied.

A few different methods of assigning weights to the edges in the graph have been proposed.
The simplest such weighting assigns weight to the edges by the Manhattan distance – for two
vertices or faces at coordinates (x, y) and (x′, y′), the weight is given as |x−x′|+ |y−y′|. The
Manhattan distance between two syndrome bits gives the number of errors in the shortest
error chain between them, and so if every qubit in the lattice is subjected to the same channel,
a smaller Manhattan distance will correspond to a higher probability of being connected by
a chain of errors. However, the probability of an error chain between two syndrome bits
decreases exponentially in the separation, and so a more accurate edge weighting will use
the probabilities of the chains between vertices. In [3], simulations were performed using
wt(u,v) = − ln(Pmax(u, v)) as the edge weights, where Pmax(u, v) is the maximum probability
of any error chain between u and v, and a higher threshold was observed than in simulations
using the Manhattan distance.

One of the strengths of matching based decoding is that it can easily be extended to
deal with syndrome errors as well [4]. A syndrome error at a single timestep will cause
the syndrome to change in that timestep, then change again in the subsequent timestep.
By recording only when a syndrome bit changes and then compiling syndrome information
across multiple time steps into one graph by adding edges between syndrome changes on the
same bit, we can match these syndrome changes to each other, indicating a syndrome error.
Graphs for each set of syndrome measurements are created as before; edges are then added
between vertices in different graphs corresponding to the same syndrome bit. If the same
syndrome changes more than twice, only edges between adjacent changes in terms of the
time ordering are created (ie. if a syndrome bit changes 3 times, no edge is created between
first and third vertex). By placing weights on these edges corresponding to the probability
of syndrome errors, the regular minimum weight matching algorithm can then be run on this
graph, and a single syndrome bit errors will likely be matched to itself in the next timestep.

The inclusion of syndrome errors poses a problem in that vertices may be better matched
to some syndrome information in the future. To solve this problem, a time boundary is
created, where a vertex with no forward temporal edge is given an edge to the time boundary.

As one additional point on the construction of graphs, in the planar code any error chain
may begin at a boundary corresponding to the type of error, resulting in only one syndrome
bit flip. This is handled simply by adding an edge between each vertex and a boundary,
weighted according to the distance to the closest corresponding boundary. To facilitate the
use of standard graph matching algorithms, edges of 0 weight are added between each pair
of boundary vertices, such that they can be matched at no cost after the syndrome vertices
have been matched.

3.2 Maximum matching algorithms

By formulating error correction as a graph matching problem, classic algorithms for max-
imum graph matching can now be used for decoding. Specifically, Edmond’s matching

4

algorithm finds a maximum matching in time polynomial in the number of vertices2. While
this algorithm itself is not weighted, a simple modification that finds a minimum weight
matching exists [9].

To describe Edmund’s maximum matching algorithm, we need a few definitions from
graph theory. Given a matching M in a graph G = (V,E), we say a vertex v ∈ V is free
if for any (u, v) ∈ E, (u, v) /∈ M ; v is matched if it is not free. We then find that a perfect
matching is a matching with no free vertices.

An alternating path is a sequence of vertices v1, ..., vn in V such that (v2k, vsk+1) ∈
M, (v2k+1, v2k+2) ∈ E \ M for k = 0, ..., bn/2c − 1. In other words, an alternating path
is a chain of adjacent vertices where the edges of the path alternate between in M and not in
M . A path is augmenting if it is an alternating path beginning and ending at free vertices,
and a blossom is an odd length alternating path beginning and ending on the same vertex.
Augmenting an alternating path P in a matching M refers to exchanging the matching edges
in P for the unmatched edges. It will be useful to note that a blossom will always begin and
end with edges from E \M , since the path is odd length beginning and ending on the same
vertex. We say a blossom is free if one of the vertices contained in it is free.

Additionally, an alternating tree is defined as a tree rooted at a free vertex, in which
every path from the root to a leaf is alternating. In such a tree, the vertices of even depth
are called outer nodes and branch on edges from E \M , while vertices of odd depth are
called inner nodes and branch on edges from M .

The correctness of the algorithm consists in two propositions:

Proposition 1. (Berge’s lemma) A matching M is maximum in G if and only if M admits
no augmenting path in G

As a standard result in graph theory, the proof of Berge’s lemma is left out.

Proposition 2. Given a matching M , suppose G has some blossom at an outer node in an
alternating tree. The graph G′ created by contracting the blossom has an augmenting path if
and only if G does.

Proof. Since the blossom begins at an outer node, it is connected by an alternating, even
length path to the root of the tree, a free node. We define M ′ to be the matching after
augmenting that path; M ′ thus has the same number of edges as M , so M ′ is maximum if
and only if M is. In particular, if M admits an augmenting path so does M ′. Also, after
augmenting this path, the base of the blossom is now a free node, and the contracted blossom
node is free.

Now suppose G′ has some augmenting path. If it does not end at the blossom, then
G trivially has the same augmenting path. Otherwise, expanding out the blossom, the
augmenting path can continue around the blossom in the direction producing an alternating
path, until it reaches the base, giving an augmenting path in G.

2While the original algorithm runs in time O(n2m) for a graph with n vertices and m edges, improvements
have been made that decrease this time to as low as O(nm + n log n) [9]

5

function Edmonds(G,M)
while there is some free vertex v do

Root alternating tree at v
while there are unexamined edges in G do

Pick some edge (v, w) from an outer vertex v
if w is matched and (w, x) ∈M then

Add (v, w) and (w, x) to tree
else if w is free then

Let M ′ be the matching M after augmenting the path from the root to w
return Edmonds(G,M ′)

else if w is an inner node of some alternating tree then
Do nothing

else if w is an outer node in the tree containing v then
Contract the blossom from w to w

else if w is an outer node in some other tree then
Let M ′ be the result of augmenting the path between tree roots
return Edmonds(G,M ′)

end if
end while

end while
end function

On the other hand, suppose G has an augmenting path, ignoring the trivial case when it
does not intersect the blossom. If it hits the blossom, neither edge entering the blossom can
be in the matching (every vertex in the blossom is either matched to another vertex in the
blossom or is free), so the path from either end of the augmenting path to the blossom is an
augmenting path in G′

The algorithm examines each edge of the graph and so always finds the augmenting path,
if it exists. By contracting the blossoms augmenting paths are preserved, but the size of the
graph shrinks – more detailed proof will be left to [9].

To extend this algorithm to find a minimum weight matching, each node is assigned a
variable yk, initially assigned to 0 when added to the tree (or created, as in the case of
contracted blossoms). An edge (u, v) is called tight if its weight w(u,v) is such that w(u,v) −
yu − yv −

∑
k yk = 0 where the sum is over all blossom nodes that contain exactly one of

u and v. The only change to the algorithm is to require that each edge (v, w) chosen must
be tight – if there are no tight edges, then all outer nodes have their variable yk increased,
and all inner nodes are decreased. Additionally, if a blossom node is decreased to 0, it is
expanded again.

Formally, this modification involves the formulation as a linear programming instance,
and is beyond the scope of this paper. In simulations of the toric and surface code, the
implementation by Vladimir Kolmogorov [9], believed to run in O(n3m) time, is commonly

6

used [1].

3.3 Improvements

A number of heuristics can be employed to improve the performance of graph matching
algorithms, most of which deal with pruning the graph.

One scheme for pruning the graph is described in [1]. A vertex u is in shadow with
respect to v if a minimum length path (on the lattice) between u and v passes through
another vertex. A vertex u is then deeply shadowed with respect to v if all of the other
neighbours of u are shadowed. Two vertices that are deeply shadowed with respect to one
another will never be matched in a minimum weight matching where the probability of a
chain is proportional to the length of the chain, and thus they can be removed. It is claimed
in [1] that this method reduces the number of edges in the syndrome graph from O(n4) to
O(n2), and timing analysis appears to imply this scaling [2].

However, it is also noted that when syndrome errors are included in the graph, it becomes
difficult to find deeply shadowed vertices, and so this method does not scale to the case of
imperfect syndrome measurement. Progress can be made by observing that at low error rates,
only local matchings should need to be performed, as long error chains and thus spatially
separated syndrome changes are infrequent. In [1], the authors describe a scheme by which
only a small initial radius of vertices is matched, and they suggest that the probability of
requiring to increase the radius should decrease exponentially with the size of the radius.

If we look at the planar code, more optimizations can be found. While the addition
of boundaries complicates the problem, it also allows some significant improvements. For
example, consider two vertices u, v in the graph and suppose M is a maximum matching
and (u, v) ∈ M (without loss of generality we assume their boundaries are matched to each
other). If the sum of their weight to the boundary, w(u,b) +w(v,b), is greater than or equal to
the weight w(u,v) of (u, v), then M ∪ {(u, b), (v, b)} \ {(u, v), (b, b)} is a maximum matching
with at most the same weight. It follows that this edge can be removed from the graph,
as any minimum weight matching can use the boundary edges instead. Additionally, this
method applies to both spatial and temporal boundary edges.

As a useful consequence of this pruning, at low error rates disconnected components start
to appear in the graph. These disconnected components can be matched in parallel, as they
are completely independent from one another. As well, since these components never have
to be considered again, the matching can be completed, then all of the related syndrome
information can be discarded from future computations.

3.4 Experimental results

Many simulations of the planar code using maximum matching algorithms have been per-
formed to date. As one simulation result, the toric code was simulated subject to the
depolarizing channel and perfect syndrome measurement for distances up to 11, and the
threshold was found to be 0.155 [4]; under non-ideal syndrome measurement the threshold
was found to drop to 0.0078. More recently, the planar code was simulated under the bit

7

flip channel with distances up to 1024, and a threshold was found at 0.1025 in the case of
perfect syndrome extraction; again when syndrome errors are added, the observed thresh-
old drops to 0.9 (note that distances only up to 55 were simulated for non-ideal syndrome
measurement) [1].

Graph matching thus appears to both produce good error correction, while at the same
time being a flexible paradigm with opportunities for optimization. While an O(l6) runtime
[5] is most likely too slow to perform actively in a realistic quantum computer, recent timing
analysis [2] suggests that maximum matching decoding could feasibly run fast enough to
keep up with quantum circuits.

4 Renormalization Group Algorithms

While classical decoding algorithms using graph matchings are both simple and powerful,
in choosing the lowest probability error chains, they optimize for distance rather than the
most likely coset of S. To address this, a renormalization group3 method for decoding
the toric code has been developed in [5] and [6]. It will turn out that while more closely
resembling a maximum likelihood decoding algorithm, it achieves a threshold reaching that
of perfect matchings, at best. Additionally, the scheme as described in the aforementioned
papers does not deal with syndrome measurement errors, limiting its practicality. However,
the renormalization group algorithm operates with a much faster proven complexity than
the matching method, and can be extended to other topological codes where no previous
decoding algorithm was previously known [5], making it a useful tool for topological decoding.

4.1 Construction

We begin with a lattice of linear size l = 2c for some integer c. The idea is to approximate
the toric code as c levels of concatenation of a topological code on a 2×2 lattice. Specifically,
a unit cell is a collection of 12 qubits in a lattice with a surface code defined by three As and
Bp generators. In the full lattice, these unit cells contain overlapping qubits, so the decoding
of different cells can’t be completely separated, hence this is truly an approximation scheme.

From the stabilizer code formalism this surface code must encode 12 − 6 = 6 logical
qubits and have 6 logical X and Z operators. It will be convenient to split these operators
into two types: 2 pairs of logical operators, denoted XL

i , Z
L
i , and 4 pairs of edge operators,

denoted XE
i , Z

E
i .

The logical operators are directly analogous to logical operators in the toric code or a
surface code with modified boundaries – they are defined as error chains between opposing
boundaries. In fact, they will define the probability distribution of errors at the next level
of concatenation. The edge operators, on the other hand, will later facilitate the combining
of probability distributions on neighbouring unit cells.

3A technique in statistical physics for viewing a system at different scales, where different scales are
self-similar up to renormalization of the parameters

8

Figure 1: Unit cell with Star and Plaquette operators

Figure 2: Logical and Edge operations: green and blue lines represent Z and X operators applied
to the corresponding qubits

We also assign canonical errors Qc to each of the 212 possible syndromes on a unit cell.
The canonical errors are concisely defined as products of error chains that cause a change
in exactly one stabilizer generator. Specifically, with each stabilizer generator S, we define
a pure error S ′ such that {S, S ′} = 0, [T, S ′] = 0 for any stabilizer generator T 6= S. Then,
the canonical error with syndrome c is given by

Qc =
∏

(S ′)c(S),

where c(S) is the bit of the syndrome corresponding to stabilizer generator S, and the
product is over all 6 stabilizer generators.

4.2 Renormalization algorithm

With all the definitions in place, the error decoding scheme can be described. The algorithm
follows by taking a probability distribution over the errors and a syndrome on a l× l lattice,
then for every unit cell in the lattice computing the total probabilities of each of the 4 logical
operations. These logical error probabilities defined on two (logical) qubits for each unit

9

Figure 3: Pure errors with corresponding stabilizer generators

cell are then used to define the (renormalized) error probabilities on two qubits of a lattice
of size l

2
× l

2
. The form this lattice takes in relation to a specific unit cell is shown below;

the syndromes for each stabilizer generator in this lattice are given by multiplying the 4
containing syndromes at the lower level lattice.

Figure 4: Lattice with probability distributions on two qubits given by the logicals one level down

By repeating this procedure for each level of concatenation, we obtain a probability distri-
bution over the logical operators of the topological code on the encoded qubits.

We can elucidate this algorithm with the following pseudo-code: at the first level, L is
the full lattice, P is the probability distribution defined on qubits of the physical lattice, and
c is the syndrome obtained by measuring the stabilizer generators of the toric code.

Given an initial lattice of size l = 2c, there are c = log l levels of concatenation (and
thus recursion), where each lattice has at most l2 unit cells, each of which take constant
time to compute their distributions. So, the algorithm has a clear complexity bound of
O(l2 log l). However, it can be observed that the computation of the probability distribution
on each unit cell is performed independent of the rest, so they can be parallelized, bringing
the complexity down to O(log l).

A few subtle points still need to be examined. First, two qubits with probability distribu-
tion given by some PU,c(L) can have correlations between them, but each unit cell contains
4 ”halves” of these distributions (ie. only one of the two correlated qubits are contained in
the unit cell). The solution to this problem used in [5] was to ignore the correlations for

10

function Renormalize(L, P, c)
Divide L into unit squares
for each unit square U do

Compute joint probability over all logical & edge operators:
PU,c(L,E) = 1

N
∑

F∈QcS
P (LEF) . N is the normalization factor

Compute marginal probability over all logical operators:
PU,c(L) =

∑
E∈Edge operators PU,c(L,E)

end for
Define L′ of size |L|/22

Define P ′ using the marginal distributions PU,c(L)
Compute c′ by multiplying each group of 4 adjacent syndrome bits in c
return Renormalize(L′, P ′, c′)

end function

these ”halves” and approximate PU,c(L) = PU,c(L1)PU,c(L2), where PU,c(Li) is the marginal
distribution on Xi and Zi.

The other issue has a more involved solution. Since some qubits are shared between
unit cells, they can’t be considered as independent when considering a unit cell, without
incurring significant inaccuracies in decoding. The solution presented in [5] is to use a belief
propagation algorithm to converge on a dsitribution for the shared qubits.

The key point to notice is that the edge operators modulo the pure errors are single qubit
errors on shared qubits. For a specific syndrome c, the pure errors are fixed, so the marginal
probabilities PU,c(E) =

∑
L∈Logical operators PU,c(L,E) of the edge operators in a unit cell form

a probability distribution of errors on the shared qubits alone. Using belief propagation,
these marginal distributions can be ”agreed” upon between neighbouring unit squares.

For concreteness, at each step, every unit cell exchanges a pair of messages with each of
its 8 neighbours corresponding sharing a qubit. Initially, every unit cell sends the uniform
distribution, and once it receives all 8 messages it updates its outgoing messages Mout,q,
corresponding to each shared qubit q, with the rule

Mout,q =
1

P (Eq)

∑
F∈LQcS

P (
∏
q′

Eq′F)
∏
q′ 6=q

Min,q′ ,

Eq is the edge operator acting on q, and LQcS is the set of logical operator cosets of QcS.
After the messages converge, or alternately after a certain number of iterations, the unit cells
can then reweigh the probabilities on the shared qubits and proceed with the renormalization
algorithm independently.

4.3 Experimental results

In practice, the renormalization group decoding method achieves both good error rates as
well as efficient performance. In [5] simulations of the toric code subject to the depolarizing
channel on each qubit we run, additionally assuming perfect syndrome measurements. Data

11

was collected for lattice sizes up to 258, and a threshold error rate of 0.152 was observed,
rivaling the results of [4] for the toric code.

It appears as though this could be a useful decoding algorithm in practice. It avoids the
potentially huge and complicated graphs that matching algorithms have to contend with,
countering with a strict, small complexity bound and parallelization. However, assuming
perfect stabilizer measurements is a major obstacle that needs to be surpassed to make a
practical decoding scheme.

5 Other decoding algorithms

Monte Carlo methods are used to simulate many complex systems, and in particular parallel
tempering has found applications in many fields, including quantum information [10]. In [7],
the authors develop a decoding algorithm for the planar code based on the parallel tempering
idea; while it achieves extremely high thresholds, the complexity of this process makes it
impractical for general quantum computing. What follows is only a cursory description of
their algorithm, and the interested reader is directed to [7] for the full details.

Given some syndrome measurement c, to best correct the error one could find the (condi-
tional) probability P (E|c) of a given logical error E by adding the (conditional) probabilities
P (e|c) of each set of physical errors e consistent with the syndrome and logical error. While
the individual probabilities P (e|c) are easy to compute, the size of this set is exponential
in the number of stabilizer generators, and thus intractably large. The solution proposed in
[7] is to randomly sample error configurations from the distribution P (e|c) and use them to
approximate P (E|c).

The algorithm follows by generating a random set of physical errors corresponding to
the syndrome. At each step a new error e′ is generated by applying a random change to
the previous error e, and the new error replaces the old one with probability given by their
ratio P (e′|c)

P (e|c) , or simply probability 1 if the ratio is greater than 1. Eventually, this sequence
converges – but, if the new error is allowed to sample across different logical errors, the ratio
will be exponential in −L, causing convergence to take time exponential in L, where L is
the linear size of the lattice.

To mitigate this exponential complexity, parallel tempering is employed, whereby some
number N of Markov chains as described above are run in parallel. Each Markov chain
uses a slightly higher error rate p, such that the N th chain has a ratio of 1 for all errors,
allowing the errors to be sampled from all logical errors without incurring any cost to this
chain. However, we need the distribution of the first chain to have these unrestricted errors.
After a given number of iterations of the Markov chains, the current error e in each chain is
swapped with the neighbouring chain according to probability exponential in the difference
in the number of physical errors. Once enough errors have propagated to the original chain,
we start checking for convergence and stop when the original chain converges.

While this hardly constitutes a precise mathematical description of the algorithm, the
details are beyond the scope of this paper and left to [7]. The complexity of this algorithm
is given as O(e(lnN)1.4L logL) where l is the linear size of the lattice and N is the num-

12

ber of chains. In practice, the authors suggest that N = O(L) works, giving complexity
subexponential in L.

Simulations of this error decoding algorithm have been performed on the surface code,
under the depolarizing channel and perfect syndrome measurements, for lattice sizes up to 65
[7]. A remarkable threshold value of 0.185 was observed, offering a significant improvement
over the thresholds obtained by both maximum matchings and renormalization. While the
algorithm itself is most likely not tractable for the timescales of practical quantum computing,
the high threshold suggests that it may be possible to find efficient algorithms, possibly using
some of these techniques, that achieve better error correction than any of the current efficient
decoding algorithms.

6 Conclusion

While significant work has bee done to make efficient, accurate decoding procedures for
the toric and related codes, it appears there is still a lot of room for improvements. Both
maximum matching and renormalization group methods admit decoding procedures with
potentially high thresholds compared to other codes, while remaining relatively efficient and
tractable. While the renormalization group algorithm has excellent complexity, a realistic
decoding procedure should account for syndrome errors, and so maximum matching appears
to be the most practical decoding procedure currently.

By demonstrating thresholds as high as 0.185 in the planar code on the other hand, one
might wonder if there exist efficient algorithms reaching these high thresholds. Given that
a simple change from using the Manhattan distance to the ln of the probability created a
profound difference in the observed threshold [3], there may still be room for improvement
in matching-based algorithms by tweaking edge weighting. Either way, it is clear that high
simulated thresholds are possible, and future work should attempt to attain such thresholds
in a computationally tractable way.

References

[1] A. Fowler, A. Whiteside, L. Hollenberg, Towards practical classical processing for the
surface code. arXiv:1110.5133v1 (2011).

[2] A. Fowler, A. Whiteside, L. Hollenberg, Towards practical classical processing for the
surface code: timing analysis. arXiv:1202.5602v1 (2012).

[3] D. Wang, A. Fowler, L. Hollenberg, Quantum computing with nearest neighbor interac-
tions and error rates over 1%. arXiv:1009.3686v1 (2010).

[4] D. Wang, A. Fowler, A. Stephens, L. Hollenberg, Threshold error rates for the toric and
surface codes. arXiv:0905.0531v1 (2009).

13

[5] G. Duclos-Cianci, D. Poulin, A renormalization group decoding algorithm for topological
quantum codes. arXiv:1006.1362v1 (2010).

[6] G. Duclos-Cianci, D. Poulin, Fast Decoders for Topological Quantum Codes.
arXiv:0911.0581v2 (2010).

[7] J. Wootton, D. Loss, High threshold error correction for the surface code.
arXiv:1202.4316v2 (2012).

[8] A. Kitaev, Fault-tolerant quantum computation by anyons. arXiv:quant-ph/9707021v1
(1997).

[9] V. Kolmogorov, Blossom V: A new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation 1 (2009).

[10] H. Bombin, R. Andrist, M. Ohzeki, H, Katzgraber, M. Martin-Delgado, Strong resilience
of topological codes to depolarization. arXiv:1202.1852v1 (2012).

14

